Copied to
clipboard

G = C22.58C24⋊C5order 320 = 26·5

The semidirect product of C22.58C24 and C5 acting faithfully

non-abelian, soluble

Aliases: C22.58C24⋊C5, C22.2(C24⋊C5), C2.(2- 1+4⋊C5), SmallGroup(320,1012)

Series: Derived Chief Lower central Upper central

C1C22C22.58C24 — C22.58C24⋊C5
C1C2C22C22.58C24 — C22.58C24⋊C5
C22.58C24 — C22.58C24⋊C5
C1C22

Generators and relations for C22.58C24⋊C5
 G = < a,b,c,d,e,f,g | a2=b2=g5=1, c2=f2=a, d2=e2=b, ab=ba, dcd-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=gfg-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, fcf-1=abc, gcg-1=abcde, ede-1=abd, gdg-1=abcd, ef=fe, geg-1=bcdef >

16C5
10C4
10C4
10C4
16C10
16C10
16C10
5C2×C4
5C2×C4
5C2×C4
16C2×C10
5C4⋊C4
5C4⋊C4
5C4⋊C4
5C4⋊C4
5C4⋊C4
5C4⋊C4
5C42
5C42.C2
5C42.C2
5C42.C2

Character table of C22.58C24⋊C5

 class 12A2B2C4A4B4C5A5B5C5D10A10B10C10D10E10F10G10H10I10J10K10L
 size 111120202016161616161616161616161616161616
ρ111111111111111111111111    trivial
ρ21111111ζ5ζ53ζ54ζ52ζ53ζ5ζ5ζ5ζ53ζ54ζ54ζ54ζ53ζ52ζ52ζ52    linear of order 5
ρ31111111ζ53ζ54ζ52ζ5ζ54ζ53ζ53ζ53ζ54ζ52ζ52ζ52ζ54ζ5ζ5ζ5    linear of order 5
ρ41111111ζ54ζ52ζ5ζ53ζ52ζ54ζ54ζ54ζ52ζ5ζ5ζ5ζ52ζ53ζ53ζ53    linear of order 5
ρ51111111ζ52ζ5ζ53ζ54ζ5ζ52ζ52ζ52ζ5ζ53ζ53ζ53ζ5ζ54ζ54ζ54    linear of order 5
ρ644-4-4000-1-1-1-1111-1111-1-111-1    symplectic lifted from 2- 1+4⋊C5, Schur index 2
ρ74-4-44000-1-1-1-1-1-1111-1111-111    symplectic lifted from 2- 1+4⋊C5, Schur index 2
ρ84-44-4000-1-1-1-111-11-11-1111-11    symplectic lifted from 2- 1+4⋊C5, Schur index 2
ρ94-44-40005255354ζ5ζ5252ζ525ζ5353ζ53ζ5ζ5454ζ54    complex lifted from 2- 1+4⋊C5
ρ104-4-440005535452535ζ5ζ5ζ5354ζ54ζ54ζ5352ζ52ζ52    complex lifted from 2- 1+4⋊C5
ρ114-4-440005255354552ζ52ζ52ζ553ζ53ζ53ζ554ζ54ζ54    complex lifted from 2- 1+4⋊C5
ρ124-44-40005452553ζ52ζ5454ζ5452ζ55ζ5ζ52ζ5353ζ53    complex lifted from 2- 1+4⋊C5
ρ134-4-4400053545255453ζ53ζ53ζ5452ζ52ζ52ζ545ζ5ζ5    complex lifted from 2- 1+4⋊C5
ρ1444-4-40005535452ζ53ζ5ζ55ζ53ζ54ζ545453ζ52ζ5252    complex lifted from 2- 1+4⋊C5
ρ1544-4-40005452553ζ52ζ54ζ5454ζ52ζ5ζ5552ζ53ζ5353    complex lifted from 2- 1+4⋊C5
ρ164-44-40005354525ζ54ζ5353ζ5354ζ5252ζ52ζ54ζ55ζ5    complex lifted from 2- 1+4⋊C5
ρ174-44-40005535452ζ53ζ55ζ553ζ5454ζ54ζ53ζ5252ζ52    complex lifted from 2- 1+4⋊C5
ρ1844-4-40005354525ζ54ζ53ζ5353ζ54ζ52ζ525254ζ5ζ55    complex lifted from 2- 1+4⋊C5
ρ194-4-4400054525535254ζ54ζ54ζ525ζ5ζ5ζ5253ζ53ζ53    complex lifted from 2- 1+4⋊C5
ρ2044-4-40005255354ζ5ζ52ζ5252ζ5ζ53ζ53535ζ54ζ5454    complex lifted from 2- 1+4⋊C5
ρ2155551-310000000000000000    orthogonal lifted from C24⋊C5
ρ22555511-30000000000000000    orthogonal lifted from C24⋊C5
ρ235555-3110000000000000000    orthogonal lifted from C24⋊C5

Smallest permutation representation of C22.58C24⋊C5
On 64 points
Generators in S64
(1 2)(3 4)(5 24)(6 20)(7 21)(8 22)(9 23)(10 51)(11 52)(12 53)(13 54)(14 50)(15 45)(16 46)(17 47)(18 48)(19 49)(25 32)(26 33)(27 34)(28 30)(29 31)(35 62)(36 63)(37 64)(38 60)(39 61)(40 58)(41 59)(42 55)(43 56)(44 57)
(1 4)(2 3)(5 42)(6 43)(7 44)(8 40)(9 41)(10 46)(11 47)(12 48)(13 49)(14 45)(15 50)(16 51)(17 52)(18 53)(19 54)(20 56)(21 57)(22 58)(23 59)(24 55)(25 38)(26 39)(27 35)(28 36)(29 37)(30 63)(31 64)(32 60)(33 61)(34 62)
(1 20 2 6)(3 43 4 56)(5 60 24 38)(7 26 21 33)(8 11 22 52)(9 45 23 15)(10 36 51 63)(12 19 53 49)(13 48 54 18)(14 59 50 41)(16 30 46 28)(17 40 47 58)(25 42 32 55)(27 31 34 29)(35 64 62 37)(39 57 61 44)
(1 13 4 49)(2 54 3 19)(5 8 42 40)(6 48 43 12)(7 15 44 50)(9 61 41 33)(10 62 46 34)(11 25 47 38)(14 21 45 57)(16 27 51 35)(17 60 52 32)(18 56 53 20)(22 55 58 24)(23 39 59 26)(28 31 36 64)(29 63 37 30)
(1 11 4 47)(2 52 3 17)(5 18 42 53)(6 40 43 8)(7 64 44 31)(9 46 41 10)(12 24 48 55)(13 60 49 32)(14 28 45 36)(15 63 50 30)(16 59 51 23)(19 25 54 38)(20 58 56 22)(21 37 57 29)(26 34 39 62)(27 61 35 33)
(1 57 2 44)(3 7 4 21)(5 10 24 51)(6 33 20 26)(8 35 22 62)(9 48 23 18)(11 29 52 31)(12 59 53 41)(13 50 54 14)(15 19 45 49)(16 42 46 55)(17 64 47 37)(25 36 32 63)(27 58 34 40)(28 60 30 38)(39 43 61 56)
(5 6 7 8 9)(10 11 12 13 14)(15 16 17 18 19)(20 21 22 23 24)(25 26 27 28 29)(30 31 32 33 34)(35 36 37 38 39)(40 41 42 43 44)(45 46 47 48 49)(50 51 52 53 54)(55 56 57 58 59)(60 61 62 63 64)

G:=sub<Sym(64)| (1,2)(3,4)(5,24)(6,20)(7,21)(8,22)(9,23)(10,51)(11,52)(12,53)(13,54)(14,50)(15,45)(16,46)(17,47)(18,48)(19,49)(25,32)(26,33)(27,34)(28,30)(29,31)(35,62)(36,63)(37,64)(38,60)(39,61)(40,58)(41,59)(42,55)(43,56)(44,57), (1,4)(2,3)(5,42)(6,43)(7,44)(8,40)(9,41)(10,46)(11,47)(12,48)(13,49)(14,45)(15,50)(16,51)(17,52)(18,53)(19,54)(20,56)(21,57)(22,58)(23,59)(24,55)(25,38)(26,39)(27,35)(28,36)(29,37)(30,63)(31,64)(32,60)(33,61)(34,62), (1,20,2,6)(3,43,4,56)(5,60,24,38)(7,26,21,33)(8,11,22,52)(9,45,23,15)(10,36,51,63)(12,19,53,49)(13,48,54,18)(14,59,50,41)(16,30,46,28)(17,40,47,58)(25,42,32,55)(27,31,34,29)(35,64,62,37)(39,57,61,44), (1,13,4,49)(2,54,3,19)(5,8,42,40)(6,48,43,12)(7,15,44,50)(9,61,41,33)(10,62,46,34)(11,25,47,38)(14,21,45,57)(16,27,51,35)(17,60,52,32)(18,56,53,20)(22,55,58,24)(23,39,59,26)(28,31,36,64)(29,63,37,30), (1,11,4,47)(2,52,3,17)(5,18,42,53)(6,40,43,8)(7,64,44,31)(9,46,41,10)(12,24,48,55)(13,60,49,32)(14,28,45,36)(15,63,50,30)(16,59,51,23)(19,25,54,38)(20,58,56,22)(21,37,57,29)(26,34,39,62)(27,61,35,33), (1,57,2,44)(3,7,4,21)(5,10,24,51)(6,33,20,26)(8,35,22,62)(9,48,23,18)(11,29,52,31)(12,59,53,41)(13,50,54,14)(15,19,45,49)(16,42,46,55)(17,64,47,37)(25,36,32,63)(27,58,34,40)(28,60,30,38)(39,43,61,56), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64)>;

G:=Group( (1,2)(3,4)(5,24)(6,20)(7,21)(8,22)(9,23)(10,51)(11,52)(12,53)(13,54)(14,50)(15,45)(16,46)(17,47)(18,48)(19,49)(25,32)(26,33)(27,34)(28,30)(29,31)(35,62)(36,63)(37,64)(38,60)(39,61)(40,58)(41,59)(42,55)(43,56)(44,57), (1,4)(2,3)(5,42)(6,43)(7,44)(8,40)(9,41)(10,46)(11,47)(12,48)(13,49)(14,45)(15,50)(16,51)(17,52)(18,53)(19,54)(20,56)(21,57)(22,58)(23,59)(24,55)(25,38)(26,39)(27,35)(28,36)(29,37)(30,63)(31,64)(32,60)(33,61)(34,62), (1,20,2,6)(3,43,4,56)(5,60,24,38)(7,26,21,33)(8,11,22,52)(9,45,23,15)(10,36,51,63)(12,19,53,49)(13,48,54,18)(14,59,50,41)(16,30,46,28)(17,40,47,58)(25,42,32,55)(27,31,34,29)(35,64,62,37)(39,57,61,44), (1,13,4,49)(2,54,3,19)(5,8,42,40)(6,48,43,12)(7,15,44,50)(9,61,41,33)(10,62,46,34)(11,25,47,38)(14,21,45,57)(16,27,51,35)(17,60,52,32)(18,56,53,20)(22,55,58,24)(23,39,59,26)(28,31,36,64)(29,63,37,30), (1,11,4,47)(2,52,3,17)(5,18,42,53)(6,40,43,8)(7,64,44,31)(9,46,41,10)(12,24,48,55)(13,60,49,32)(14,28,45,36)(15,63,50,30)(16,59,51,23)(19,25,54,38)(20,58,56,22)(21,37,57,29)(26,34,39,62)(27,61,35,33), (1,57,2,44)(3,7,4,21)(5,10,24,51)(6,33,20,26)(8,35,22,62)(9,48,23,18)(11,29,52,31)(12,59,53,41)(13,50,54,14)(15,19,45,49)(16,42,46,55)(17,64,47,37)(25,36,32,63)(27,58,34,40)(28,60,30,38)(39,43,61,56), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64) );

G=PermutationGroup([[(1,2),(3,4),(5,24),(6,20),(7,21),(8,22),(9,23),(10,51),(11,52),(12,53),(13,54),(14,50),(15,45),(16,46),(17,47),(18,48),(19,49),(25,32),(26,33),(27,34),(28,30),(29,31),(35,62),(36,63),(37,64),(38,60),(39,61),(40,58),(41,59),(42,55),(43,56),(44,57)], [(1,4),(2,3),(5,42),(6,43),(7,44),(8,40),(9,41),(10,46),(11,47),(12,48),(13,49),(14,45),(15,50),(16,51),(17,52),(18,53),(19,54),(20,56),(21,57),(22,58),(23,59),(24,55),(25,38),(26,39),(27,35),(28,36),(29,37),(30,63),(31,64),(32,60),(33,61),(34,62)], [(1,20,2,6),(3,43,4,56),(5,60,24,38),(7,26,21,33),(8,11,22,52),(9,45,23,15),(10,36,51,63),(12,19,53,49),(13,48,54,18),(14,59,50,41),(16,30,46,28),(17,40,47,58),(25,42,32,55),(27,31,34,29),(35,64,62,37),(39,57,61,44)], [(1,13,4,49),(2,54,3,19),(5,8,42,40),(6,48,43,12),(7,15,44,50),(9,61,41,33),(10,62,46,34),(11,25,47,38),(14,21,45,57),(16,27,51,35),(17,60,52,32),(18,56,53,20),(22,55,58,24),(23,39,59,26),(28,31,36,64),(29,63,37,30)], [(1,11,4,47),(2,52,3,17),(5,18,42,53),(6,40,43,8),(7,64,44,31),(9,46,41,10),(12,24,48,55),(13,60,49,32),(14,28,45,36),(15,63,50,30),(16,59,51,23),(19,25,54,38),(20,58,56,22),(21,37,57,29),(26,34,39,62),(27,61,35,33)], [(1,57,2,44),(3,7,4,21),(5,10,24,51),(6,33,20,26),(8,35,22,62),(9,48,23,18),(11,29,52,31),(12,59,53,41),(13,50,54,14),(15,19,45,49),(16,42,46,55),(17,64,47,37),(25,36,32,63),(27,58,34,40),(28,60,30,38),(39,43,61,56)], [(5,6,7,8,9),(10,11,12,13,14),(15,16,17,18,19),(20,21,22,23,24),(25,26,27,28,29),(30,31,32,33,34),(35,36,37,38,39),(40,41,42,43,44),(45,46,47,48,49),(50,51,52,53,54),(55,56,57,58,59),(60,61,62,63,64)]])

Matrix representation of C22.58C24⋊C5 in GL8(𝔽41)

400000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
,
10000000
01000000
00100000
00010000
000040000
000004000
000000400
000000040
,
03129180000
10018120000
29180310000
18121000000
00002313110
00001318011
00001101828
00000112823
,
701130000
073300000
30383400000
38110340000
000007431
00003403137
0000371007
0000104340
,
004000000
000400000
400000000
040000000
000000400
000000040
00001000
00000100
,
0416130000
37013250000
1613040000
13253700000
0000251203
00001216380
00000382512
0000301216
,
10000000
29180310000
000400000
10018120000
00001000
00003002313
00000001
00002823030

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,10,29,18,0,0,0,0,31,0,18,12,0,0,0,0,29,18,0,10,0,0,0,0,18,12,31,0,0,0,0,0,0,0,0,0,23,13,11,0,0,0,0,0,13,18,0,11,0,0,0,0,11,0,18,28,0,0,0,0,0,11,28,23],[7,0,30,38,0,0,0,0,0,7,38,11,0,0,0,0,11,3,34,0,0,0,0,0,3,30,0,34,0,0,0,0,0,0,0,0,0,34,37,10,0,0,0,0,7,0,10,4,0,0,0,0,4,31,0,34,0,0,0,0,31,37,7,0],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0],[0,37,16,13,0,0,0,0,4,0,13,25,0,0,0,0,16,13,0,37,0,0,0,0,13,25,4,0,0,0,0,0,0,0,0,0,25,12,0,3,0,0,0,0,12,16,38,0,0,0,0,0,0,38,25,12,0,0,0,0,3,0,12,16],[1,29,0,10,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,31,40,12,0,0,0,0,0,0,0,0,1,30,0,28,0,0,0,0,0,0,0,23,0,0,0,0,0,23,0,0,0,0,0,0,0,13,1,30] >;

C22.58C24⋊C5 in GAP, Magma, Sage, TeX

C_2^2._{58}C_2^4\rtimes C_5
% in TeX

G:=Group("C2^2.58C2^4:C5");
// GroupNames label

G:=SmallGroup(320,1012);
// by ID

G=gap.SmallGroup(320,1012);
# by ID

G:=PCGroup([7,-5,-2,2,2,2,-2,-2,561,456,947,387,184,1543,1466,745,360,2629,851,718,375,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=g^5=1,c^2=f^2=a,d^2=e^2=b,a*b=b*a,d*c*d^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=g*f*g^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=a*b*c,g*c*g^-1=a*b*c*d*e,e*d*e^-1=a*b*d,g*d*g^-1=a*b*c*d,e*f=f*e,g*e*g^-1=b*c*d*e*f>;
// generators/relations

Export

Subgroup lattice of C22.58C24⋊C5 in TeX
Character table of C22.58C24⋊C5 in TeX

׿
×
𝔽